Jeremiah Armentrout - Research

Armentrout - Research

Back to Boettinger Lab People

 

Fort Bliss Soil Survey 2010
 

The purpose of this project is to establish an ecosite evaluation of the study area for future monitoring as to the effects of military training in the area. The project was initiated by the Department of Defense and is headed by the USDA from the Joranada Experimental Range office at New Mexico State University in conjunction with Utah State University. The project area has been historically used for grazing with little or no development and no impact on the landscape other than livestock and wildlife. The area has been maintained and the livestock has been managed by the BLM for the last few decades. The military is now expanding training operations into the area to include field exercises by troops on the ground. They will conduct operations by foot and vehicle in open ground areas. Training will also include the construction of temporary encampments that will result in high traffic areas. The future monitoring of the site will include possible changes to vegetation and soil conditions.


The location of this site is Otero Mesa, New Mexico. The mesa is situated at the northern extreme of Fort Bliss and 22 miles east northeast of Orogrande, New Mexico. The mesa is at an elevation of ≈5100 ft. which is approximately 900 ft. above the surrounding basin floor. The area is accessible by route 506 from state highway 54. The generalized landform of the project area is alluvial fans/remnant fans in the upland which give way to lowlands of basin floor with limited drainage. The soil temperature regime is mesic and has a soil moisture regime of aridic boarding on ustic. The parent material for this area is limestone derived alluvium.

 

 


One hundred sample locations were chosen with conditioned Latin hypercube based off of environmental covariates which included but not limited to topographic, geologic and remotely sensed spectral data. At each sample location the genetic horizons were sampled and described to a depth of one meter unless lithic contact or a limiting layer was encountered. The pedons were classified to the family level using field sampling techniques. The ecosite was evaluated from soil type and vegetative cover that was recorded on site to state and phase.


At the completion of this phase of the project we will be able to predict soil distribution using random forest classification and produce a preliminary predictive map that encompasses soil and ecosite type. The preliminary prediction is subject to change with results from ongoing laboratory analysis. Currently the mineralogy class of majority of soils sampled are of a mixed mineralogy class but analysis could easily place soils into a carbonatic classification.